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Artificial intelligence (AI) has achieved remarkable success in fields like computer vision and natural
language processing, mostly enabled by large-scale training data. However, AI’s transformative potential
remains largely underexploited in areas without big data. This limitation is evident in fields involving 3D
geometry, such as 3D computer vision, computer graphics, and physics simulation, because existing 3D
datasets are still orders of magnitude smaller than their counterparts in vision and language domains. In
contrast, these fields have developed rich mathematical models, such as differential geometry in graphics
and governing equations in physics, without relying on large data. My research philosophy centers
on combining classical mathematical models with modern machine learning approaches to
unlock AI’s potential in data-constrained domains.

Building on this philosophy, I study how to create AIs that can generate [1–8] and analyze [9–13] 3D
spatial data. With backgrounds in computer vision, machine learning, and computer graphics, I have
pioneered the paradigm shift toward using continuous neural fields to represent 3D geometry, transforming
how 3D data is generated and processed. My works have garnered significant recognition and impacted
other scientific disciplines such as chemistry [14] and physics [15].

Looking ahead, my long-term research goal is to empower different scientific disciplines
to harness AI’s potential through the synergy of modeling and learning approaches. I plan to
build a lab to explore the fundamental principles of applied machine learning in data-constrained domains,
from geometry-related areas to other scientific fields. My lab will study questions such as how to design
data-efficient neural network architectures exploiting domain-specific properties [16] and how to apply
machine learning to accomplish complex designs in graphics and engineering [6]. I look forward to initiating
interdisciplinary collaborations to apply machine learning to empower different scientific and engineering
applications like solving partial differential equations under limited observations [17].

1 Learning to Generate Spatial Data

Generating and editing 3D shapes is crucial in fields like computer vision, graphics, and mechanical engi-
neering. Although traditional methods have provided tools for capturing real-world 3D shapes or creating
digital ones, using these tools remains manual and time-consuming. Machine learning models have the
potential to automate this process by directly predicting the desired 3D shape, yet their effectiveness is
limited by the scarcity of readily usable 3D training data. My works address this issue by designing shape
representations that can make use of the data and knowledge accumulated by the vision and graphic
communities while remaining compatible with machine learning models.

3D point cloud generation. Point clouds are perhaps the most widely available source of 3D data,
thanks to classical 3D reconstruction techniques. While generative fixed-dimensional tensors were com-
monly studied in machine learning, generating point clouds was still challenging due to the inherent irregu-
larity, as 3D shapes are usually represented with different numbers of points. In PointFlow [1], we address
this issue by modeling each shape as a continuous probability density field of 3D points. A point cloud can
be viewed as a set of discrete samples from such a distribution, regardless of its cardinality. We further
improve the efficiency of this representation in our ECCV 2020 paper, ShapeGF [2], by modeling only the
gradient of the density fields, akin to the methods that later evolved into diffusion models. This representa-
tion can combine deep generative models with data created directly by traditional 3D vision and graphics
methods. Using this framework, both PointFlow and ShapeGF achieved state-of-the-art performance in
point cloud generation at their time. These two works are among the first successful instantiations of a
new paradigm in which 3D generative models output shapes as continuous fields. My works on 3D shape
generation have been cited over 1,000 times, and our code has received over 900 stars. Their impact has
extended beyond generating 3D point clouds to scientific applications such as molecule generation [14].
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Figure 1: Left : generation process of PointFlow [1]. Middle: complex shapes created by the efficient
generation process of ShapeGF [2]. Right : discretization-free geometry processing using neural fields [3].

Evaluating 3D generative models. In addition to developing 3D generative models, I contributed
to establishing efficient and reliable evaluation metrics for them. Perhaps the most reliable evaluation
method is through humans, such as Turing tests. However, these tests can be costly or impractical to
perform as they require users to review and process many 3D shapes. To address this issue, I propose
using an “Automatic Turing Test” (ATT) [18], which replaces human evaluators with machine learning
models. In PointFlow [1], we propose 1NN accuracy, a metric using nearest-neighbor classifiers to perform
ATT. 1NN accuracy has become the facto metric to measure the geometry quality of 3D generative models.
Other than geometry quality, downstream applications often consider many other criteria when evaluating
a generative model. To scale ATT to different criteria, we leverage the commonsense reasoning capability
of Large Multimodal Models like GPT-4V. In our CVPR 2024 paper [5], we successfully prompt GPT-4V
to perform ATT and achieve evaluation results that align with human judgments. Our work provides
the first automatic quantitative metric to evaluate text-to-3D generative models holistically using multiple
criteria. In just half a year since its publication, our paper has been cited more than 50 times, both for its
effectiveness in evaluating 3D generative models and for pioneering the idea of using foundation models to
perform ATT in different modalities. ATT is also adapted to other tasks, including image captioning [19]
and language-driven 3D editing [20].

Geometry processing. Processing and editing 3D geometries are as crucial as generating them. Apply-
ing learning-based algorithms to geometry processing tasks is not trivial due to the lack of large data for
editing operations. While classical methods have established rich mathematical models for manipulating
well-discretized polygon meshes, their performance can be compromised by discretization errors caused by
the meshing and remeshing steps in the pipeline. My NeurIPS 2021 paper [3] circumvents this issue by
proposing a geometry processing pipeline based on neural fields, a novel representation encoding shapes
as continuous fields parameterized by neural networks. My work formulates each geometry processing
operation as finding a neural field that optimizes objectives derived from traditional mathematical models,
such as thin-shell energy [21]. My proposed pipeline avoids discretization errors and supports many editing
operations where data is expensive to collect, such as elastic deformation. I continued to work on extending
the impact of neural field representation to other modalities, such as images [16], radiance fields [22], and
fields that store physics quantities [11, 12]. My works in geometry processing have also inspired methods
in applications like physics simulation [15, 23] and mechanical design [24].

2 Learning to Analyze Spatial Data

In addition to creating and editing shapes, it is also important for AI systems to understand the properties
of 3D shapes. Directly applying learning-based methods here is challenging because it is difficult to obtain
large-scale data with ground truth annotations for many properties, such as Young’s modulus of a material.
On the contrary, traditional methods predict these properties based on mathematical models without
requiring large training data and labels. However, these classical models can be slow and not robust to
noisy inputs like real-world images or 3D scans. My research integrates the strengths of classical approaches
to create learning algorithms that can accurately and efficiently predict different shape properties.

Enchancing physics solvers with learning. Solving partial differential equations (PDEs) efficiently
and accurately conditioned on a shape is an essential way to understand the physical properties of that
shape. While Monte Carlo PDE solvers [25] have shown great promise in being robust to complex geome-
tries, they can be expensive due to the large number of random samples needed to achieve the desired
accuracy. We propose a novel PDE solver that combines the robustness of Monte Carlo methods with the
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Figure 2: Left: fast and accurate PDE solution achieved by combining neural fields with Monte Carlo
methods [11, 12]; Middle: physics-in-the-loop optimization method allows us to render realistic dressed
avatars in novel poses and lighting [10]; Right: symmetry detection robust to noise [9].

speed of neural network [11, 12]. Our proposed solvers can produce accurate and high-resolution PDE
solutions up to 20 times faster than existing methods.

Reconstructing material properties from visual observations. Preparing a 3D shape for physics
simulation and rendering necessitates an understanding of its material properties. However, recovering these
properties from real-world data, such as videos, presents a significant challenge, as it involves simultaneously
solving for geometry, lighting, and tracking. Developing learning-based algorithms for this purpose is also
difficult due to the lack of annotated data for material properties. In PhysAvatar [10], we address these
challenges using a multi-stage optimization leveraging inductive biases from the physics simulator of loose
garments and lighting. Our approach can recover plausible material properties directly from videos and
achieve realistic renderings of the 3D avatar in unseen poses and under novel lighting conditions.

Symmetry detection. In addition to physical properties, it is also important to understand geomet-
ric properties, such as symmetry. Traditional modeling-based methods struggle when noise is present in
the input 3D shapes, while learning-based approaches are hindered by the difficulty of annotating partial
symmetries in scale. Our SIGGRAPH Asia 2024 paper [9] derives a theoretical connection between the tra-
ditional symmetry detection algorithms and the learning-based diffusion models from the machine learning
community. We leverage this connection to develop a symmetry detector that is generalizable to unseen
shapes and robust to different noise patterns.

3 Future Directions

In addition to advancing the abovementioned thrusts in 3D vision and graphics, I am eager to expand the
scope of my research to other data-constrained fields in science and engineering. My interests include:

Data-efficient Network Architectures. Domain-specific data often possesses characteristics unique
to its domain. For instance, 3D point clouds are typically sparse, and images usually exhibit self-similarities
across scales. General network architectures without corresponding inductive biases, such as self-attention,
can be inefficient when dealing with limited domain-specific data. This raises an important question: can
we design more efficient network architectures by leveraging the data’s known structure? In our NeurIPS
2022 paper [16], we demonstrated that leveraging the scale-space structure can lead to a novel class of
efficient neural field architectures, highlighting the potential of integrating domain knowledge as inductive
biases in neural networks. Moving forward, exploring how to incorporate insights from geometry and
physics into network design remains an exciting direction.

AI for Engineering Design. Designing high-quality shapes that are both manufacturable and func-
tional in engineering applications requires multi-step reasoning to achieve optimal results. Existing research
usually emphasizes efficiency, using neural networks to directly output the final design [1, 2]. However,
accomplishing design tasks with low error tolerance demands a “slow thinking” approach [26] – one that
systematically explores multiple hypotheses before arriving at a conclusion. With BlenderAlchemy [6], we
have taken the first step toward building such a system and showcased the advantages of “slow think-
ing” for graphical editing. Expanding this concept to other engineering design tasks, which may involve
thousands of reasoning steps, can be a fruitful direction that requires insights from reinforcement learning,
physical simulation, and foundation models. Breakthroughs in this direction can streamline and accelerate
workflows in industries such as aerospace and mechanical engineering.
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AI for Scientific Modeling. Building on the exploration of “slow thinking” systems for engineering
design tasks, a similar paradigm can be applied to create mathematical models to facilitate scientific
discovery, where reasoning over multiple hypotheses via simulations and experiments is critical. In my
NeurIPS 2024 paper, I have begun such exploration by developing non-linear PDE solvers under limited
observations [17]. I am excited to take a dive deep into scientific applications by initiating interdisciplinary
projects collaborating with domain experts, aiming to develop AI systems tailored to these needs. I believe
the knowledge gained through these collaborations has the potential to advance scientific discovery and
address key challenges in the development of artificial general intelligence.
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